Probability II: B. Math (Hons.) I
Academic Year 2022-23, Second Semester Midsem Exam

Total Marks $=50 \quad$ Duration: 10:00 am - 12:30 pm

- Show all your work and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.

1. Suppose (X, Y) is a continuous random vector with a joint probability density function

$$
f_{X, Y}(x, y)= \begin{cases}c & \text { if } 0<x<1,1-x<y<2-x \\ 0 & \text { otherwise }\end{cases}
$$

Here c is a positive constant.
(a) (3 marks) Find c.
(b) (12 marks) Compute marginal probability density functions of X and Y.
(c) (5 marks) Calculate $P(X<Y)$.
2. Suppose X_{1}, X_{2} are independent random variables such that $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$. Define $Y_{1}:=X_{1}+X_{2}$ and $Y_{2}:=\frac{X_{1}}{X_{1}+X_{2}}$.
(a) (12 marks) Find a joint probability density function of Y_{1} and Y_{2}.
(b) (4 marks) Using (a), show that Y_{1} and Y_{2} are independent.
(c) (4 marks) What are the marginal distributions of Y_{1} and Y_{2} ?
3. (10 marks) Let N be the number of empty poles when r distinguishable flags are displayed at random on n distinguishable poles (here $r, n \in \mathbb{N}$). Assuming that each pole has unlimited capacity, compute the expected value of N.

